a2 United States Patent

Davis et al.

US009436839B2

10) Patent No.: US 9,436,839 B2

(54) TOKENIZATION USING MULTIPLE
REVERSIBLE TRANSFORMATIONS

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Mark H. Davis, Oakbrook Terrace, IL
(US); Alexander S. Lukichev,
Wheaton, 1L (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 13 days.

(21) Appl. No.: 14/498,329

(22) Filed: Sep. 26, 2014

(65) Prior Publication Data
US 2016/0019396 Al Jan. 21, 2016

Related U.S. Application Data
(60) Provisional application No. 62/026,820, filed on Jul.

45) Date of Patent: Sep. 6, 2016
(58) Field of Classification Search
CPC .ottt GO6F 21/6209
USPC ottt 713/193
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2013/0046995 Al* 2/2013 Movshovitz HO4L 9/0618
713/189

OTHER PUBLICATIONS

“Block cipher,” http://en.wikipedia.org/wiki/Block_ cipher, printed
Oct. 31, 2014, 15 pages.

“Format-preserving encryption,” http://en.wikipedia.org/wiki/For-
mat-preserving__encryption, printed Oct. 31, 2014, 7 pages.
“Luhn algorithm,” http://en.wikipedia.org/wiki/Luhn_ algorithm,
printed Oct. 31, 2014, 4 pages.

* cited by examiner

Primary Examiner — Jacob Lipman
(74) Attorney, Agent, or Firm — Barnes & Thornburg LLP

(57) ABSTRACT

Technologies for tokenizing data including a computing
device to extract plaintext data from an input file to be
tokenized. The computing device performs data domain-
specific format-preserving encryption on the extracted plain-
text data based on a first cryptographic key to generate

21, 2014. .
encrypted data and replaces one or more portions of the
(51) Int.CL encrypted data with corresponding portions of alternative
GO6F 21/62 (2013.01) data based on a mapping table that maps encrypted data to
GO6F 21/60 (2013.01) alternative data. The computing device further performs data
GO6F 21/78 (2013.01) domain-specific format-preserving encryption on the alter-
(52) US.Cl native data based on a second cryptographic key to generate
CPC ... GOGF 21/6209 (2013.01); GO6F 21/602 @ token and stores the token in an output file.
(2013.01); GOGF 21/78 (2013.01) 25 Claims, 6 Drawing Sheets
200 L 100
g “
COMPUTING DEVICE
124 _— 202
TOKENIZATION MODULE
130 206
DATA EXTRACTION MODULE] -
132 N
MAPPING | 208
TABLE(S)
_____ CRYPTOGRAPHY MODULE 1
P 204 /21 0
COMMUNICATION DATA MAPPING MODULE ud
MODULE
212
L~
2 DATA REPACKAGING MODULE |+
MAPPING TABLE
GENERATION MODULE

US 9,436,839 B2

Sheet 1 of 6

Sep. 6, 2016

U.S. Patent

| (S)F1avl |
| _ONIddYIN_ | TN
e p———— : A}
A i o
0gl
|—————————- asvav.iva
| FOIATA OIHAVHDOLAMO “| vzl
rdd} —
AHOWANW
N—tlL
_ (8)321A3A TvH3IAHdIY3d
ozl —
W3LSASENS O/l
AHLINDHID
NOILVDINNWWOD
gL — N—z11
_ JOVHOLS VLVA 408$3004d
o1 —" N—o11

3OIA3A ONILNdINOD

004 —

1 "OId

US 9,436,839 B2

Sheet 2 of 6

Sep. 6, 2016

¢ Old

U.S. Patent

)
3TNAON NOILYYINID
319VL ONIddVI
P _ IINAON ONIOVIOVHIN V1VA ——
21z
3INAON
_ _ 31NAON ONIddVIN V1Va NOILYDINNNINOD
\
oz 0T
_ ITNAON AHAVHOOLdAND -~ ~
MWO\ | (S)F1avl |
z
| _ONIddYN _ | TN
i L]
(S)IATM
P _ 3TNAOW NOILOVMLX3 V.1V G N~
902 oL
3TNAON NOILYZININOL 3svav.ivda
20z —)
JOIATAA DONILNdINOD U/
oo, — 00Z

U.S. Patent Sep. 6, 2016 Sheet 3 of 6 US 9,436,839 B2

300

W

302

TOKENIZE DATA?

NO

IDENTIFY AND EXTRACT PLAINTEXT DATA

306 FROM INPUT FILE TO BE TOKENIZED j)“
D Nl r—" CHARACTER(S) TO PRESERVE |
FROM
FIG. 4 @ (
<+ 308
SELECT PLAINTEXT DATA FOR TOKENIZATION I/
h 4
DETERMINE KEYS, TWEAKS, AND MAPPING 310
TABLE(S) ASSOCIATED WITH SELECTED
PLAINTEXT DATA
PERFORM DATA DOMAIN-SPECIFIC ENCRYPTION
ON EXTRACTED PLAINTEXT DATA WITH FIRST
314 STAGE SYMMETRIC KEY AND TWEAK 212
N PRESERVE IDENTIFIED CHARACTER(S) | %
s | o __
! " INCLUDE PRESERVED GHARACTER(S) |
B IN FIRST STAGE TWEAK |
TO
FIG. 4

FIG. 3

U.S. Patent Sep. 6, 2016 Sheet 4 of 6

US 9,436,839 B2

300

FROM
FIG. 3

REPLACE “CHUNKS” OF ENCRYPTED DATA WITH
ALTERNATIVE DATA BASED ON DOMAIN-
SPECIFIC MAPPING TABLE

|

PERFORM DATA DOMAIN-SPECIFIC
ENCRYPTION OF ALTERNATIVE DATA WITH
THIRD STAGE SYMMETRIC KEY AND TWEAK

320
322 TO GENERATE TOKEN |~
“d | T INCLUDE PRESERVED CHARACTER(S) 1

INCLUDE PRESERVED CHARACTER(S) |
\| IN THIRD STAGE TWEAK

318

326 STORE GENERATED TOKEN IN FILE

_______________ 324
4| REPACKAGE GENERATED TOKEN WITHIN

I
\l INPUT FILE AT EXTRACTED LOCATION(S) |

328
MORE
PLAINTEXT DATA TO TO
TOKENIZE? FIG. 3

FIG. 4

U.S. Patent Sep. 6, 2016 Sheet 5 of 6 US 9,436,839 B2

500

DETOKENIZE DATA?

IDENTIFY AND EXTRACT TOKEN FROM INPUT o
5
506 FILE TO BE DETOKENIZED | X
N— IDENTIFY CHARACTER(S) TO PRESERVE I
I (©
508
SELECT TOKEN FOR DETOKENIZATION — ';'FGO'\E/;'
510
DETERMINE KEYS, TWEAKS, AND MAPPING |~
TABLE(S) ASSOCIATED WITH SELECTED TOKEN
PERFORM DATA DOMAIN-SPECIFIC DECRYPTION
OF EXTRACTED DATA WITH THIRD STAGE
514 SYMMETRIC KEY AND TWEAK
g 512
~~ PRESERVE IDENTIFIED CHARACTER(S) I |~
516
d_ | " INCLUDE PRESERVED CHARACTER(S) |
) IN THIRD STAGE TWEAK |
REPLACE “CHUNKS’ OF DECRYPTED DATAWITH | 218
ALTERNATIVE DATA BASED ON REVERSE L
DOMAIN-SPECIFIC MAPPING TABLE

TO
FIG. 6

FIG. 5

U.S. Patent Sep. 6, 2016 Sheet 6 of 6

500

FROM
FIG.5

PERFORM DATA DOMAIN-SPECIFIC DECRYPTION

OF ALTERNATIVE DATA WITH FIRST STAGE
SYMMETRIC KEY AND TWEAK TO GENERATE
PLAINTEXT DATA

522
| INCLUDE PRESERVED CHARACTER(S) |
\l IN FIRST STAGE TWEAK I
X
STORE GENERATED PLAINTEXT DATA IN FILE
526\ I REPACKAGE GENERATED PLAINTEXT |
DATA WITHIN INPUT FILE AT |

| EXTRACTED LOCATION(S) I

FIG. 6

528
MORE TOKENS
TO DETOKENIZE?

US 9,436,839 B2

TO

FIG.5

US 9,436,839 B2

1

TOKENIZATION USING MULTIPLE
REVERSIBLE TRANSFORMATIONS

CROSS-REFERENCE TO RELATED U.S.
PATENT APPLICATION

The present application claims priority under 35 U.S.C.
§119(e) to U.S. Provisional Patent Application Ser. No.
62/026,820, entitled “TOKENIZATION USING MUL-
TIPLE REVERSIBLE TRANSFORMATIONS,” which was
filed on Jul. 21, 2014.

BACKGROUND

Often, digital documents transmitted over networks or
stored in various forms of computer storage contain data that
should be protected from reading by an unauthorized reader.
Further, due to the requirements of particular software
architectures, various techniques protect the data without
breaking the algorithms intended to work with the unmodi-
fied documents. A common approach is to replace the
protected piece of data with a token—a string that resembles
the original data but prevents the unauthorized reader access
to the original text. Thus, tokenization solutions provide the
means of encoding documents by replacing the protected
data with tokens and subsequently reversing the process.

Most tokenization solutions utilize a secure vault or
database to hold an encrypted copy of the original plaintext
(i.e., clear-text) and the associated token for reverse map-
ping during the decoding phase of the tokenization solution.
For example, the token may be a random value that must
also conform to specific requirements, such as conforming
to a sixteen digit credit card number including a checksum
(e.g., a Luhn 10 checksum). In many solutions, the secure
token database is a dynamic entity or structure that “grows”
over time as new plaintext-token mappings are generated. It
should be appreciated that solutions utilizing such a token
vault have significant performance, data consistency,
resource, and management challenges as the number of
tokens increases within a cluster of machines and/or across
clusters of geographically distributed data centers needed to
meet high application availability, throughput, and latency
requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

The concepts described herein are illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
Where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements.

FIG. 1 is a simplified block diagram of at least one
embodiment of a computing device for handling data tokeni-
zation;

FIG. 2 is a simplified block diagram of at least one
embodiment of an environment of the computing device of
FIG. 1,

FIGS. 3-4 is a simplified flow diagram of at least one
embodiment of a method for tokenizing data that may be
executed by the computing device of FIG. 1; and

FIGS. 5-6 is a simplified flow diagram of at least one
embodiment of a method for detokenizing data that may be
executed by the computing device of FIG. 1.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are suscep-
tible to various modifications and alternative forms, specific

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiments thereof have been shown by way of example
in the drawings and will be described herein in detail. It
should be understood, however, that there is no intent to
limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives consistent
with the present disclosure and the appended claims.

References in the specification to “one embodiment,” “an
embodiment,” “an illustrative embodiment,” etc., indicate
that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may or may not necessarily include that particular feature,
structure, or characteristic. Moreover, such phrases are not
necessarily referring to the same embodiment. Further, when
a particular feature, structure, or characteristic is described
in connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to effect such
feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described. Addition-
ally, it should be appreciated that items included in a list in
the form of “at least one A, B, and C” can mean (A); (B);
(C): (A and B); (B and C); (A and C); or (A, B, and C).
Similarly, items listed in the form of “at least one of A, B,
or C” can mean (A); (B); (C): (A and B); (B and C); (A and
C); or (A, B, and C).

The disclosed embodiments may be implemented, in
some cases, in hardware, firmware, software, or any com-
bination thereof. The disclosed embodiments may also be
implemented as instructions carried by or stored on one or
more transitory or non-transitory machine-readable (e.g.,
computer-readable) storage medium, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans-
mitting information in a form readable by a machine (e.g.,
a volatile or non-volatile memory, a media disc, or other
media device).

In the drawings, some structural or method features may
be shown in specific arrangements and/or orderings. How-
ever, it should be appreciated that such specific arrange-
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure is not meant to imply that such feature
is required in all embodiments and, in some embodiments,
may not be included or may be combined with other
features.

Referring now to FIG. 1, in the illustrative embodiment,
a computing device 100 for data tokenization is shown. As
described in detail below, the computing device 100 is
configured to tokenize and detokenize data in a secure and
efficient manner. It should be appreciated that, in some
embodiments, the techniques described herein eliminate the
need for a secure token database or vault by utilizing a
reversible algorithm based on a combination of static map-
ping tables (e.g., pre-computed tables) and encryption/de-
cryption. In the illustrative embodiment, the techniques
described herein further support token generation for mul-
tiple data domain types with different semantic restrictions/
constraints. In particular, as described herein, the computing
device 100 may perform two reversible transformations
based on data domain-specific format-preserving encryption
(FPE) algorithms. It should be appreciated that an FPE
cryptographic algorithm encrypts data in such a way that the
encrypted output data (e.g., ciphertext) is maintained in the
same format (e.g., same length and alphabet) as the input

US 9,436,839 B2

3

data (e.g., plaintext). For example, in an embodiment, an
FPE-encrypted sixteen-digit credit card number is another
sixteen-digit number. Additionally, although the unen-
crypted data is described primarily in reference to text data,
in other embodiments, the techniques described herein may
be applied to other types of data (e.g., images, audio data,
etc.).

As described below, the computing device 100 applies an
initial FPE-based transformation that ensures that the plain-
text (e.g., clear-text) input to be tokenized is a pseudo-
random value for which all positional dependence has been
obfuscated. Subsequently, the computing device 100 applies
an additional FPE-based transformation that ensures any
potential look-up information “leakage” associated with the
memory-intensive transformation is also obfuscated. It
should be appreciated that the data domain-specific encryp-
tion may require additional processing to enforce the asso-
ciated domain-specific constraint (e.g., ensuring that a gen-
erated social security number token area code sub-
component is within the valid range). The computing device
100 may utilize static mapping tables (e.g., pre-computed
tables) containing random mappings to and from partial
plaintext values and partial random token values. In the
illustrative embodiment, the mapping is a reversible
memory-intensive algorithmic function (e.g., in contrast to a
strictly “mathematically-based” algorithm). In the illustra-
tive embodiment, the computing device 100 utilizes such
mapping tables between the two FPE-based transformations
discussed above and based on the particular data domain-
specific FPE algorithm. By utilizing the FPE-based trans-
formations, multiple small pre-computed static mapping
tables may be utilized multiple times within the same
tokenization without any potential information leakage.
Additionally, in other embodiments, different symmetric
keys and associated tweaks in the first and/or third stage
FPE-based transformations may be utilized to uniquely
multiplex the generated tokens to be unique for individual
merchants, merchant groups, services, and/or other suitable
entities.

The computing device 100 may be embodied as any type
of computing device capable of performing the functions
described herein. For example, the computing device 100
may be embodied as a desktop computer, server, router,
switch, laptop computer, tablet computer, notebook, net-
book, Ultrabook™, cellular phone, smartphone, wearable
computing device, personal digital assistant, mobile Internet
device, Hybrid device, and/or any other computing/commu-
nication device. As shown in FIG. 1, the illustrative com-
puting device 100 includes a processor 110, an input/output
(“1/0”) subsystem 112, a memory 114, a data storage 116, a
communication circuitry 118, and one or more peripheral
devices 120. Additionally, in some embodiments, the com-
puting device 100 may also include a cryptographic device
122 to facilitate cryptographic functions. Of course, the
computing device 100 may include other or additional
components, such as those commonly found in a typical
computing device (e.g., various input/output devices and/or
other components), in other embodiments. Additionally, in
some embodiments, one or more of the illustrative compo-
nents may be incorporated in, or otherwise form a portion of,
another component. For example, the memory 114, or por-
tions thereof, may be incorporated in the processor 110 in
some embodiments.

The processor 110 may be embodied as any type of
processor capable of performing the functions described
herein. For example, the processor 110 may be embodied as
a single or multi-core processor(s), digital signal processor,

10

15

20

25

30

35

40

45

50

55

60

65

4

microcontroller, or other processor or processing/controlling
circuit. Similarly, the memory 114 may be embodied as any
type of volatile or non-volatile memory or data storage
capable of performing the functions described herein. In
operation, the memory 114 may store various data and
software used during operation of the computing device 100
such as operating systems, applications, programs, libraries,
and drivers. The memory 114 is communicatively coupled to
the processor 110 via the I/O subsystem 112, which may be
embodied as circuitry and/or components to facilitate input/
output operations with the processor 110, the memory 114,
and other components of the computing device 100. For
example, the I/O subsystem 112 may be embodied as, or
otherwise include, memory controller hubs, input/output
control hubs, firmware devices, communication links (i.e.,
point-to-point links, bus links, wires, cables, light guides,
printed circuit board traces, etc.) and/or other components
and subsystems to facilitate the input/output operations. In
some embodiments, the I/O subsystem 112 may form a
portion of a system-on-a-chip (SoC) and be incorporated,
along with the processor 110, the memory 114, and other
components of the computing device 100, on a single
integrated circuit chip.

The data storage 116 may be embodied as any type of
device or devices configured for short-term or long-term
storage of data such as, for example, memory devices and
circuits, memory cards, hard disk drives, solid-state drives,
or other data storage devices. The data storage 116 and/or the
memory 114 may store various data during operation of the
computing device 100 useful for performing the functions
described herein. As shown in FIG. 1, the computing device
100 may also include a database 124. Depending on the
particular embodiment, the database 124 may be stored in
the data storage 116, stored in the memory 114, stored on a
remote computing device, and/or embodied as a component
of the computing device 100. As described below, in the
illustrative embodiment, the database 124 includes one or
more cryptographic keys 130 and one or more mapping
tables 132. In the illustrative embodiment, the cryptographic
keys 130 are embodied as cryptographic keys associated
with an FPE-based encryption/decryption algorithm; how-
ever, in some embodiments, one or more of the crypto-
graphic keys 130 may be based on another suitable crypto-
graphic algorithm. For example, the cryptographic keys 130
may include symmetric cryptographic keys, asymmetric
cryptographic keys, session keys, signature keys, crypto-
graphic hashes, cryptographic tweaks (e.g., a cross between
a hash salt and an initialization vector), cryptographic ini-
tialization vectors or values, cryptographic salt values or
functions, and/or other data related to cryptographic func-
tions. Further, in the illustrative embodiment, the mapping
tables 132 are configured to map data to alternative data in
a format-preserving manner as described below.

The communication circuitry 118 may be embodied as
any communication circuit, device, or collection thereof,
capable of enabling communications between the computing
device 100 and other remote devices over a network. The
communication circuitry 118 may be configured to use any
one or more communication technologies (e.g., wireless or
wired communications) and associated protocols (e.g., Eth-
ernet, Bluetooth®, Wi-Fi®, WIMAX, etc.) to effect such
communication.

The peripheral devices 120 may include any number of
additional peripheral or interface devices, such as speakers,
microphones, additional storage devices, and so forth. The

US 9,436,839 B2

5

particular devices included in the peripheral devices 120
may depend on, for example, the type and/or intended use of
the computing device 100.

The cryptographic device 122 may be embodied as any
hardware component(s) or circuitry capable of performing
cryptographic functions and/or establishing a trusted execu-
tion environment. For example, in some embodiments, the
cryptographic device 122 may be embodied as a security
co-processor, such as a trusted platform module (TPM), a
secure enclave such as Intel® Software Guard Extensions
(8GX), or an out-of-band processor. Additionally, in some
embodiments, the cryptographic device 122 may establish
an out-of-band communication link with remote devices.

As described below, the illustrative computing device 100
is capable of performing tokenization without a secure token
database. Accordingly, the resource, data consistency, and
management issues associated with such a database may be
also eliminated (e.g., data backup, data compaction, internal
communication channels, etc.). The elimination of such
additional issues allows for the ability to linearly scale
within a cluster by adding nodes and to linearly scale across
multiple clusters by replicating the first and third stage
symmetric keys, cryptographic tweaks, and/or pre-computed
static mapping tables. As such, in some embodiments,
multiple hosts/clusters may each be configured to indepen-
dently perform its own tokenization and/or detokenization
operations on different or identical plaintext or tokens.

It should be appreciated that multiple mapping tables may
be utilized such that each of the mapping tables cover a
small portion of the potential data domain range of possible
input values. For example, a medical application may token-
ize a patient’s name that could be up to 128 Latin alphabet
characters and decimal digits. Building a single pre-com-
puted mapping table would have (10+26+26)'28=62!2%
entries, because there are 10 decimal numbers (0 through 9),
26 lowercase letters (a though z), and 26 uppercase letters (A
through 7). It is not practical to build a single mapping table
of'that size. Therefore, one or more mapping tables covering
a subset of that range may be utilized multiple times.
However, if the same sub-pattern of clear-text appears in
multiple inputs, then all of the generated tokens would have
the same pre-computed mapping value for this identical
sub-pattern.

By utilizing the first stage algorithm transformation (e.g.,
with an FPE-based algorithm), information from the entire
unencrypted data (e.g., clear-text) input is distributed across
all of the resulting encrypted data (e.g., encrypted text,
ciphertext, or otherwise obfuscated text) in the illustrative
embodiment. Further, by using the first stage encrypted data
(e.g., encrypted text) as input to the second stage mapping
table look-up, the look-up bias associated with hitting the
same table entry is eliminated or significantly reduced. For
example, the first six digits of a credit card number are the
issuer identification number. As described below, the
encrypted data is replaced with alternative data based on a
mapping table during a second stage transformation. Fur-
ther, based on a third stage transformation using FPE, even
if there was any look-up entry bias, the multiple look-up
results are, in some embodiments, distributed across the
entire resulting token.

It should be appreciated that if a six digit (or smaller)
pre-computed static mapping table is used for tokenization
of credit card numbers, then all credit card numbers asso-
ciated with the same bank (i.e., issuer) would have the same
partial token value without having the first or third stage
transformations as described herein. The mapping tables
(e.g., pre-computed static mapping tables) provide a revers-

10

15

20

25

30

35

40

45

50

55

60

65

6

ible memory-intensive algorithmic transformation.
Although such techniques may be memory-intensive, they
are generally not computability-intensive like AES, 3DES,
Camellia, and Blowfish bulk ciphers. Further, in the illus-
trative embodiment, there is no single symmetric key that, if
compromised, would comprise everything encrypted. Gen-
erally, an attacker knowing how one entry maps a single
clear-text value to a token would not reveal anything about
another entity mapping of the mapping table. Additionally,
the techniques described herein are not vulnerable (or are
otherwise less vulnerable) to the normal side-channel attacks
to which standard encryption ciphers are known to be
vulnerable (e.g., timing or cache hits) due to, for example,
the same code pattern occurring on all look-ups with stan-
dard encryption ciphers.

It should be appreciated that an attacker must essentially
compromise three entities or structures to launch a success-
ful attack. That is, the attacker would have to compromise
the first and third stage symmetric keys and associated
cryptographic tweaks and also compromise the mapping
tables. Further, in some embodiments, the symmetric key
and tweak used in the first stage and/or the third stage
transformation may be replaced with a merchant, merchant
group, or back-end application-specific symmetric key and
tweak to make the generated token value specific to that
entity. It should be appreciated that the primary function of
a cryptographic tweak is to serve a similar function that a
salt does but for a reversible cipher (e.g., the FPE algorithms
described herein). In particular, a cryptographic tweak gen-
erally maps the clear-text value to a different encrypted-text
value when the same cryptographic symmetric key is used.
In the illustrative embodiment, the cryptographic tweak is
kept private and utilized to introduce further entropy into the
reversible transformations and reduce potential information
leakage.

Referring now to FIG. 2, in use, the computing device 100
establishes an environment 200 for data tokenization. The
illustrative environment 200 of the computing device 100
includes a tokenization module 202 and a communication
module 204. Additionally, the tokenization module 202
further includes a data extraction module 206, a cryptogra-
phy module 208, a data mapping module 210, and a data
repackaging module 212. Further, in some embodiment, the
environment 200 also includes a mapping table generation
module 214. Each of the modules of the environment 200
may be embodied as hardware, software, firmware, or a
combination thereof. Additionally, in some embodiments,
one or more of the illustrative modules may form a portion
of another module and/or one or more of the illustrative
modules may be embodied as a standalone or independent
module. For example, each of the modules, logic, and other
components of the environment 200 may form a portion of,
or otherwise be established by, the processor 110 of the
computing device 100.

The tokenization module 202 is configured to handle the
tokenization, detokenization, and related functions of the
computing device 100. The data extraction module 206 is
configured to identify and extract data from a file (e.g., a text
file, database, and/or other file) to be tokenized. The data
extraction module 206 is further configured to identify and
extract data from the file to be detokenized. In some embodi-
ments, the data may be extracted from a particular file,
tokenized, and replaced in the file. Accordingly, in such
embodiments, the data extraction module 206 may extract
tokenized data from that file for detokenization and replace-
ment. In some embodiments, the data extraction module 206

US 9,436,839 B2

7

further identifies portions of the extracted data that should
not tokenized or detokenized (e.g., the first or last few
digits).

The cryptography module 208 is configured to perform
various cryptographic functions as described herein. For
example the cryptography module 208 may perform the
FPE-based transformations associated with the first and third
stage of the techniques described herein. In other words, the
cryptography module 208 is configured to perform data
domain-specific encryption and decryption of data. Of
course, in some embodiments, the cryptography module 208
may also perform other cryptographic functions of the
computing device 100. In some embodiments, the cryptog-
raphy module 208 is embodied as, or otherwise included in,
the cryptographic device 122.

The data mapping module 210 is configured to replace
“chunks” of data with alternative data chunks based on the
mapping tables 132 with respect to the second stage trans-
formation described herein.

The data repackaging module 212 is configured to repack-
age the transformed data into a file. In the illustrative
embodiment, the transformed data is repackaged into the
same file from which it is extracted; however, in other
embodiments, that may not be the case. For example, the
transformed data may be repackaged into a part of another
file (e.g., a database). In particular, the data repackaging
module 212 is configured to repackage generated tokens into
a file, for example, at the locations in the file from which the
data was extracted. Further, during detokenization, the data
repackaging module 212 is configured to repackage the
generated plaintext (or otherwise decryption original data) in
a file at an appropriate location (e.g., the location from
which the data was originally extracted for tokenization).
The communication module 204 handles the communication
between the computing device 100 and remote computing
devices through a network.

The mapping table generation module 214 is configured
to generate one or more data domain-specific mapping tables
132 for use as described herein. It should be appreciated that
the mapping tables 132 may be generated using any suitable
algorithms, techniques, and/or mechanisms. For example, in
the illustrative embodiment, a data domain-specific mapping
table 132 may be generated by determining an alphabet
associated with the data domain and using a one-time
symmetric cryptographic key and cryptographic tweak to
iterate through table entries to generate a unique table
mapping. In some embodiments, the mapping table genera-
tion module 214 may iterate through all possible mapping
table entries and determine/identify random entries with
which to swap the mapping table entries. Further, in embodi-
ments in which data domain-specific restrictions exist, the
mapping table generation module 214 may iterate through
the table entries and ensure that valid table entries (e.g.,
valid social security numbers) are mapped to other valid
entries and that invalid table entries are mapped to other
invalid entries.

As described below, in some embodiments, the computing
device 100 may utilize, and therefore the mapping table
generation module 214 may generate, mapping tables 132
having entries with data chunks having different sizes. For
example, the mapping table generation module 214 may
generate a mapping table 132 having mappings for 5-char-
acter data chunks, 4-character data chunks, 3-character data
chunks, 2-character data chunks, and 1-character data
chunks (or any other suitable combination of data chunk
sizes). In some embodiments, the computing device 100
utilizes the largest possible data chunk available for the

15

40

45

50

8

mapping possible based on the length of the encrypted data
(e.g., encrypted plaintext) or decrypted data (e.g., decrypted
token data) as described below (e.g., to ensure significant
randomness). It should further be appreciated that, in some
embodiments, the mapping table generation module 214
may generate multiple mapping tables 132 for a particular
field or application, to enforce data domain restrictions,
and/or for other suitable reasons. For example, in some
embodiments, the mapping table generation module 214
may generate two different mapping tables 132 to handle the
serial number and the area code/group sub-components of a
social security number because of domain-specific restric-
tions. Of course, in some embodiments, the data domain-
specific mapping tables 132 may be pre-computed by a
remote computing device and received by the computing
device 100 for subsequent use.

Referring to FIG. 3, in use, the computing device 100 may
execute a method 300 for tokenizing data. The illustrative
method 300 begins with block 302 in which the computing
device 100 determines whether to tokenize data. If so, in
block 304, the computing device 100 identifies and extracts
plaintext data from an input file to be tokenized. The
computing device 100 may identify the data set for tokeni-
zation using any suitable techniques (e.g., specific fields in
an input file, user input, etc.). In doing so, in block 306, the
computing device 100 may identify one or more characters
to preserve from tokenization. In other words, the computing
device 100 may identify portion of the data (e.g., a certain
number of characters) that are not to be included in the
extracted data to be replaced during tokenization. As
described below, in some embodiments, the preserved char-
acters may be used in the generation on a unique token value
(e.g., in conjunction with a cryptographic tweak). For
example, the computing device 100 may preserver a certain
number of characters of the plaintext data (e.g., the first six
digits and the last four digits of a credit card number). In the
illustrative embodiment, in determining the data to be token-
ized, the computing device 100 also determines the particu-
lar alphabet(s) of the data to be tokenized. Although the data
to be tokenized is described herein primarily as plaintext
data, it should be appreciated that the techniques described
herein may be applied to non-textual data in some embodi-
ments. That is, the particular alphabet utilized may be the
Latin alphabet, Cyrillic alphabet, Greek alphabet, Mandarin
alphabet, decimal digits, alphanumeric characters, binary
digits, characters with diacritical marks, or another suitable
alphabet depending on the particular embodiment. As such,
the tokenized data may include, for example, digital images
and/or other data having a binary representation. Further, in
some embodiments, the computing device 100 ensures that
the identified data fields to be tokenized do not overlap with
one another.

In block 308, the computing device 100 selects an iden-
tified plaintext data element (e.g., a data field, word, or
otherwise identified portion of plaintext data). As discussed
below, the computing device 100 iterates through the iden-
tified plaintext data to generate the corresponding tokenized
data (i.e., tokens). As such, the computing device 100 may
select the plaintext data for tokenized in any suitable order.
In block 310, the computing device 100 determines the
cryptographic keys (e.g., first and third stage symmetric
keys), cryptographic tweaks (e.g., first and second stage
cryptographic tweaks), and mapping table(s) associated with
the selected plaintext data (e.g., based on the determined
alphabet, any known data domain-specific restrictions, and/
or other suitable information). As described herein, in some

US 9,436,839 B2

9

embodiments, if the length of the token being generated
exceeds the largest chunk size supported, multiple table
look-ups may be performed.

In block 312, the computing device 100 performs data
domain-specific encryption on the extracted data with a first
stage symmetric key and cryptographic tweak. For example,
the computing device 100 may utilize data domain-specific
FPE encryption with a pre-computed application first stage
symmetric key and tweak. Performing such encryption
redistributes the information contained within the extracted
data across all characters of the extracted data in some
embodiments. As discussed above, in some embodiments,
the computing device 100 may identify one or more char-
acter(s) of the input data to preserve. As such, in block 314,
the computing device 100 may preserve the identified char-
acter(s), for example, by storing those characters in the
memory 114, the data storage 116, and/or the database 124.
Further, in block 316, the computing device 100 may include
the preserved character(s) in the first stage cryptographic
tweak. For example, the computing device 100 may append
the preserved character(s) to the first stage cryptographic
tweak value (e.g., before, after, or in the middle of the
tweak). It should be appreciated that doing so ensures that if
the same character pattern is tokenized, but the preserved
characters are different, then different token values will be
generated. Additionally, as discussed above, in some
embodiments, some specific data domain types (e.g., social
security numbers and email addresses) may require separate
processing on different sub-components of the data. In such
embodiments, the computing device 100 may append the
plaintext of the most varied sub-component (e.g., most
random or unique) to the least varied sub-component. For
example, the local portion of an email address may be
appended to the tweak used for the domain sub-component.
As such, the computing device 100 may ensure that if the
same sub-component character pattern is tokenized that
different token values will be generated and only the length
of the sub-component, which does not change, may be
leaked.

In block 318 of FIG. 4, the computing device 100 replaces
“chunks” of encrypted data (i.e., from the first stage) with
alternative data based on the mapping table(s). That is, the
computing device 100 looks up each chunk or portion of the
encrypted data from the first stage in the appropriate static
mapping data and replaces it with the alternative data to
which it is mapped. It should be appreciated that, in some
embodiments, this is done by breaking out the largest chunk
size supported by a pre-computed mapping table and per-
forming that look-up. In the illustrative embodiment, if there
is a partial chunk remaining, a smaller sized pre-computed
mapping table is used to perform the look-up mapping for
that partial chunk. As such, in the illustrative embodiment,
mapping tables of different sizes may be used depending on
the particular data extracted. Each chunk look-up may
require mapping the physical characters to their associated
radix string equivalence and then mapping that to their
big-integer encoding in some embodiments.

In block 320, the computing device 100 performs data
domain-specific encryption of the alternative data with the
third stage symmetric key and cryptographic tweak to gen-
erate one or more tokens. For example, the computing
device 100 may utilize data domain-specific FPE encryption
with a third stage symmetric encryption key and crypto-
graphic tweak. Further, in some embodiments, the comput-
ing device 100 may, in block 322, include one or more
preserved characters in the third stage cryptographic tweak
in a manner similar to that described above in block 316. In

25

40

45

10

the illustrative embodiment, the FPE encryptions performed
in the blocks 312 and 320 (i.e., the first and third stages) may
enforce the data domain-specific restrictions and/or con-
straints. For example, if a valid social security number is
being tokenized, then the area code, group, and serial
number subcomponent restrictions are enforced in the illus-
trative embodiment.

In block 324, the computing device 100 stores the gen-
erated token in a file (e.g., in the memory 114 and/or the data
storage 116). For example, in block 326, the computing
device 100 may repackage the generated token within the
input file (i.e., the input document or file) at the extracted
location(s). In other embodiments, the computing device
100 may, alternatively or additionally, store the generated
token in another location (e.g., another file). It should be
appreciated that blocks 312, 318, and 320 may be referred to
herein as the first stage transformation, the second stage
transformation, and the third stage transformation, respec-
tively, for convenience.

In block 328, the computing device 100 determines
whether there is more plaintext data to tokenize. If so, the
method 300 returns to block 308 of FIG. 3 in which the
computing device 100 selects the next plaintext data for
tokenization. As described above, the computing device 100
may determine which plaintext data to select next in any
suitable order depending on the particular embodiment.

By way of example, suppose the computing device 100
has identified a 16-digit credit card number for tokenization
and does so with the option to preserve the last five decimal
digits of the credit card number. In some embodiments, the
computing device 100 may utilize, for example, mapping
tables handling four decimal digit chunks (i.e., having
10,000 entries in the mapping tables). It should be appreci-
ated that, in the illustrative embodiment, there is no asso-
ciation between the table entry and the entry value. Further,
a table value only appears once within the table and there is
a one-to-one correspondence between the table index and
the table content.

Continuing the example, the computing device 100 takes
the incoming 16-digit credit card number (e.g.,
1234567890123456) and extracts the data to be tokenized
(e.g., 12345678901). Additionally, the computing device
100 stores the last five characters (e.g., 23456) and their
positions in the incoming plaintext, because that information
is preserved as discussed above. In the illustrative embodi-
ment, the validity of the token [uhn checksum is not
enforced due to the application configured options (e.g.,
preservation of the last five digits). During the first stage
transformation, the computing device 100 performs FPE-
based encryption on the extracted data to generate encrypted
data: ENCppp (key,g.1,(tweak,,, ., [Ipreserved]), alpha-
bet o cimans 123456789017)=61666621038. It should be
appreciated that, in some embodiments, the computing
device 100 may enforce Luhn check digit validity by placing
a restriction on the tokenized portion of the input data. For
example, the computing device 100 may utilize a cycle
walking algorithm within the first stage transformation and
the third stage transformation and utilize table walking
within the second stage transformation. Depending on the
specific semantics being enforced in a particular embodi-
ment, other mechanisms may be utilized to enforce the data
domain-specific restrictions. For example, if the last digit of
a credit card number is not being preserved, the digits may
be tokenized and/or Luhn check digit may be generated.

During the second stage transformation, the computing
device 100 performs three mapping table look-up replace-
ments. In the illustrative embodiment, because the tokenized

US 9,436,839 B2

11

data is 11-digits in length, 4-digit and 3-digit pre-computed
mapping table chunks are utilized. That is, the computing
device 100 maps the first four digits to alternative data, the
second four digits to alternative data, and the last three digits
to alternative data mapped to those chunks in the illustrative
embodiment. For example, the computing device 100 may
replace the chunk “6166” with that table entry unique table
value (i.e., mapped value) of “9584,” may replace the chunk
“6621” with the mapped value of “6004,” and may replace
the chunk “038” with the value “283.” After the mapping,
the alternative (i.e., mapped) data/value is “95846004283.”
The last mapping table look-up is performed using a 3-digit
pre-computed mapping table in the illustrative embodiment.
It should be appreciated that using the largest size of the
multiple size pre-computed static mapping tables maximizes
(or otherwise improves) the randomness encoded into the
token.

During the third stage transformation, the computing
device 100 performs FPE-based encryption on the extracted
data or, more particularly, the alternative data to generate the
token:

ENCppp(keY ages (tWeak,,, 05 [Ipreserved)),

alphabet,, , ..., <“95846004283”)=67459114741.
The computing device 100 may merge the generated token
with the original preserved input (e.g., “23456”) if any to
generate a merged token (e.g., “6745911474123456”). That
is, the generated token is merged with the characters pre-
served from the original input. As discussed above, the
computing device 100 may further repackage the token (or
merged token) in the file at the appropriate location.

Referring to FIG. 5, in use, the computing device 100 may
execute a method 500 for detokenizing data. The illustrative
method 500 begins with block 502 in which the computing
device 100 determines whether to detokenize data. If so, in
block 504, the computing device 100 identifies an extracts
data from an input file to be detokenized (e.g., tokenized
data). The computing device 100 may identify the data set
for detokenization using any suitable techniques (e.g., simi-
lar to tokenization described above). In doing so, in block
506, the computing device 100 may identify one or more
characters to preserve from detokenization in a manner
similar to that described above with respect to tokenization.
In other words, the computing device 100 may identify
portion of the token (e.g., a certain number of characters)
that are not to be included in the extracted data to be
detokenized. Further, as described below, the preserved
character(s) may be included in the processing in some
embodiments.

In block 508, the computing device 100 selects an iden-
tified token (e.g., a data field, word, or otherwise identified
portion of the tokenized data). As discussed below, the
computing device 100 iterates through the identified tokens
to generate the corresponding detokenized data (i.e., plain-
text data). As such, the computing device 100 may select the
token for detokenization in any suitable order. In block 510,
the computing device 100 determines the cryptographic keys
(e.g., first and third stage symmetric keys), cryptographic
tweaks (e.g., first and second stage cryptographic tweaks),
and mapping table(s) associated with the selected token
(e.g., based on the determined alphabet, any known data
domain-specific restrictions, and/or other suitable informa-
tion).

In block 512, the computing device 100 performs data
domain-specific decryption on the tokenized data with the
third stage symmetric key and cryptographic tweak. For
example, the computing device 100 may utilize data
domain-specific FPE encryption with the pre-computed

10

15

20

25

30

35

40

45

50

55

60

65

12

application third stage symmetric key and tweak described
above. As discussed above, in some embodiments, the
computing device 100 may identify one or more character(s)
of the input data to preserve. As such, in block 514, the
computing device 100 may preserve the identified
character(s), for example, by storing those characters in the
memory 114, the data storage 116, and/or the database 124.
Further, in some embodiments, the computing device 100
may, in block 516, include the preserved character(s) in the
third stage cryptographic tweak (e.g., by appending the
preserved character(s) to the cryptographic tweak) as
described above.

In block 518, the computing device 100 replaces chunks
of the decrypted tokenized data with alternative data from
the pre-computed static reverse mapping table. In some
embodiments, the computing device 100 may utilize the
same mapping tables described above with regard to tokeni-
zation but instead use the mappings in the reverse direction.

In block 520 of FIG. 6, the computing device 100 per-
forms data domain-specific decryption of the alternative data
with the first stage symmetric key and cryptographic tweak
to generate the original (e.g., plaintext) data that was token-
ized. In the illustrative embodiment, the computing device
100 enforces the data domain-specific restrictions and/or
constraints during the transformations. Further, in some
embodiments, the computing device 100 may, in block 522,
include one or more preserved characters in the first stage
cryptographic tweak in a manner similar to that described
above.

In block 524, the computing device 100 stores the gen-
erated plaintext data in a file (e.g., in the memory 114 and/or
the data storage 116). For example, in block 526, the
computing device 100 may repackage the generated plain-
text data within the input file (i.e., the input document or file)
at the extracted location(s). In other embodiments, the
computing device 100 may, alternatively or additionally,
store the generated plaintext data in another location (e.g.,
another file). It should be appreciated that blocks 512, 518,
and 520 may be referred to herein as the third stage reverse
transformation, the second stage reverse transformation, and
the first stage reverse transformation, respectively, for con-
venience.

In block 528, the computing device 100 determines
whether there are more tokens to detokenize. If so, the
method 500 returns to block 508 of FIG. 5 in which the
computing device 100 selects the next token for detokeni-
zation. As described above, the computing device 100 may
determine which token to select next in any suitable order
depending on the particular embodiment.

Continuing the previously discussed example, the com-
puting device 100 identifies the incoming 16-digit tokenized
credit card number (e.g., “6745911474123456) and
extracts the data to be detokenized (e.g., “67459114741”).
As discussed above, the last five characters of the tokenized
number (e.g., “23456”) are preserved so those numbers and
their positions within the incoming data/text are stored by
the computing device 100. During the third stage reverse
transformation, the computing device 100 performs FPE-
based decryption on the extracted data: DECpz(key s,
(tweak,,,, ;[Ipreserved]),alphabet,, ., “674591147417)=
95846004283. It should be appreciated that in embodiments
using symmetric cryptographic keys, the encryption keys
and the decryption keys are the same. During the second
stage reverse transformation, the computing device 100
performs three reverse mapping table look-up replacements.
For example, the computing device 100 replaces chunks
“9584” with that table entry unique table value (i.e., mapped
value) of “6166,” replaces “6004”

US 9,436,839 B2

13

with the mapped value “6621,” and replaces “283” with the
mapped value “038.” As such, the partially decrypted token-
ized data (e.g., “95846004283”) is replaced with the alter-
native data (e.g., “61666621038”). During the first stage
reverse transformation, the computing device 100 performs
FPE-based decryption on the extracted data or, more par-
ticularly, the alternative data: DECppg(key, 0
(tweak,,,,.[Ipreserved]),alphabet ;. .;,,.;, “61666621038)=
12345678901. As discussed above, the computing device
100 merges the detokenized data (e.g., “123456789017)
with the original preserved input (e.g., “23456) to generate
the original (e.g., plaintext) data (e.g.,
“1234567890123456”). Further, the computing device 100
may repackage the generated original and detokenized data
in the file at the appropriate location(s).

As illustrated by the example provided above, in some
embodiments, the computing device 100 may utilize mul-
tiple sized pre-computed mapping tables for different types
of data domain alphabets. Each mapping table may be used
to map all potential input string values to another string
value of the same number of characters (e.g., every output
value being unique within a particular table). To compact the
mapping tables, the physical input string characters may be
mapped to an associated radix string alphabet. Each char-
acter in the string may be represented by a specific integer
value based upon the radix and the character set representing
the radix. For example, the decimal numbers may be rep-
resented by strings of the character set {‘0°, ¢1°, ¢2°, 3°, ‘4’
5, 46°, ‘7, ‘8%, ‘9’ }. Each ASCII character in the set may
be mapped to specific values in the radix (e.g., ‘0’=0, ‘1°=1,
‘2°=2, etc.) The radix string encoding may then be converted
into a big integer, which may be looked up in the associated
table. Depending on the particular embodiment, the output
value may be encoded, for example, as a big integer (e.g., for
greatest storage compaction), as a radix string, or as the
physical character string (e.g., for minimal processing).

In various embodiments, a combination of different look-
ups using different mapping table sizes may be used. For
example, multiple look-ups using the mapping table sup-
porting the largest number of characters may be utilized, in
some embodiments, with a final table look-up using one of
the small tables for the last chunk to be processed. It should
be appreciated that, in the illustrative embodiment, using the
largest table introduces the largest amount of randomness to
the token generation.

It should be appreciated that the mapping tables may be
generated in any way (e.g., by the computing device 100 or
another computing device) consistent with the performance
of the functions described herein. For example, in some
embodiments, the computing device 100 (or another com-
puting device) generates a symmetric key and cryptographic
key from a strong random number generator (or pseudoran-
dom number generator). For each mapping table, the com-
puting device 100 may iterate through all of the entries using
an FPE-based algorithm to generate a pseudo-random value.
The generated symmetric key and tweak may be deleted and
never used again. Further, for each mapping table, the
computing device 100 may iterate through the table entries
generating a random entry within the table that will have
generated values that will be swapped with, or randomly
select two table entries and swap them.

In some embodiments, enforcing different data domain
restrictions and/or constraints may require some changes to
be made to the tokenization, detokenization, and/or table
generation processing described above. When the underly-
ing data domain only allows a limited subset of values, the
pre-computed static mapping table(s) may require special

15

30

40

45

55

14

table initialization and processing. For example, a social
security number is composed of three subcomponents: a
3-digit area code, a 2-digit group, and a 4-digit serial
number. Each subcomponent has a different number of digits
composing it and a different range of values that are valid/
invalid. As such, to handle this type of condition, the
computing device 100 may generate a different mapping
table for each subcomponent and ensure that valid table
entries contain only valid values and that invalid table
entries include only invalid values (e.g., invalid values are
mapped to invalid and valid to valid). To do so, the com-
puting device 100 may, for example, compute the table, find
an invalid entry with a valid value, find a valid entry with an
invalid value, and swap the content of those entries. Further,
during the second stage table look-up transformation, the
associated table is used in the look-up processing (e.g., the
area code table for the area code subcomponent transforma-
tion, the serial number table for the serial number subcom-
ponent transformation, etc.).

It should be appreciated that the techniques described
herein provide many improvements to tokenization. For
example, reversible data domain-specific FPE is used to
generate a pseudorandom string to eliminate potential infor-
mation leakage when utilizing pre-computed static mapping
tables that are smaller than the potential number of tokens.
The utilization of both reversible computability-intensive
cipher algorithms (e.g., FPE) and a reversible memory-
intensive algorithm (e.g., the mapping table look-up) makes
the overall tokenization/detokenization system generally
immune (or at least less susceptible) to any potential flaw in
the cipher being utilized. Further, using FPE with one-time
usage symmetric key and cryptographic tweaks to populate
static mapping tables with provable pseudorandom values in
a deterministic single pass, and breaking potential math-
ematical relationships by swapping generated values with
other randomly selected entries further insulates the teokeni-
zation/detokenization system against potential weaknesses
in the underlying randomness (e.g., from pseudorandom
number generation). In some embodiments, the crypto-
graphic keys, cryptographic tweaks, and the mapping tables
are maintained for the life of the reversible transformation.

EXAMPLES

Tustrative examples of the technologies disclosed herein
are provided below. An embodiment of the technologies may
include any one or more, and any combination of, the
examples described below.

Example 1 includes a computing device for tokenizing
data, the computing device comprising a data extraction
module to extract plaintext data from an input file to be
tokenized; a cryptography module to perform data domain-
specific format-preserving encryption on the extracted plain-
text data based on a first cryptographic key to generate
encrypted data; a data mapping module to replace one or
more portions of the encrypted data with corresponding
portions of alternative data based on a mapping table that
maps encrypted data to alternative data; wherein the cryp-
tography module is further to perform data domain-specific
format-preserving encryption on the alternative data based
on a second cryptographic key to generate a token; and a
data repackaging module to store the token in an output file.

Example 2 includes the subject matter of Example 1, and
wherein the data extraction module is further to extract the
token from the output file to be detokenized; the cryptog-
raphy module is further to perform data domain-specific
format-preserving decryption on the extracted token based

US 9,436,839 B2

15

on the second cryptographic key to generate decrypted data;
the data mapping module is further to replace one or more
portions of the decrypted data with the corresponding one or
more portions of the encrypted data based on the mapping
table; the cryptography module is further to perform data
domain-specific format-preserving decryption on the one or
more portions of encrypted data based on the first crypto-
graphic key to generate plaintext data; and the data repack-
aging module is further to store the plaintext data in the input
file.

Example 3 includes the subject matter of any of Examples
1 and 2, and wherein to extract the plaintext data from the
input file comprises to extract the plaintext data from a
location in the input file; and wherein to store the plaintext
data in the input file comprises to store the plaintext data at
the location in the input file.

Example 4 includes the subject matter of any of Examples
1-3, and wherein to extract the plaintext data from the input
file comprises to extract the plaintext data from a location in
the input file; and wherein to store the token in the output file
comprises to store the token at the location in the input file.

Example 5 includes the subject matter of any of Examples
1-4, and wherein to perform the encryption on the extracted
plaintext data comprises to perform data domain-specific
format-preserving encryption on the extracted plaintext data
based on the first cryptographic key and a first cryptographic
tweak.

Example 6 includes the subject matter of any of Examples
1-5, and wherein to perform the encryption on the alternative
data comprises to perform data domain-specific format-
preserving encryption on the alternative data based on the
second cryptographic key and a second cryptographic
tweak.

Example 7 includes the subject matter of any of Examples
1-6, and wherein the data extraction module is further to
identify one or more characters of the plaintext data to
preserve from tokenization.

Example 8 includes the subject matter of any of Examples
1-7, and wherein to perform the encryption on the extracted
plaintext data comprises to perform encryption on the
extracted plaintext data other than the preserved one or more
characters; and wherein to perform the encryption on the
alternative data comprises to perform the encryption on the
alternative data other than the preserved one or more char-
acters.

Example 9 includes the subject matter of any of Examples
1-8, and wherein to perform the encryption on the extracted
plaintext data comprises to perform data domain-specific
format-preserving encryption on the extracted plaintext data
based on the first cryptographic key and a first cryptographic
tweak, wherein the first cryptographic tweak includes the
preserved one or more characters.

Example 10 includes the subject matter of any of
Examples 1-9, and wherein the data extraction module is
further to determine the first cryptographic key, the mapping
table, and the second cryptographic key associated with the
extracted plaintext data based on an alphabet of the extracted
plaintext data.

Example 11 includes the subject matter of any of
Examples 1-10, and wherein the one or more portions are
selected based on at least one data domain-specific con-
straint.

Example 12 includes the subject matter of any of
Examples 1-11, and wherein the one or more portions have
non-uniform sizes.

10

15

20

25

30

35

40

45

50

55

60

16

Example 13 includes the subject matter of any of
Examples 1-12, and wherein the alternative data is modified
based on a data domain-specific constraint.

Example 14 includes the subject matter of any of
Examples 1-13, and wherein the input file comprises a text
file.

Example 15 includes a method for tokenizing data by a
computing device, the method comprising extracting, by the
computing device, plaintext data from an input file to be
tokenized; performing, by the computing device, data
domain-specific format-preserving encryption on the
extracted plaintext data based on a first cryptographic key to
generate encrypted data; replacing, by the computing device,
one or more portions of the encrypted data with correspond-
ing portions of alternative data based on a mapping table that
maps encrypted data to alternative data; performing, by the
computing device, data domain-specific format-preserving
encryption on the alternative data based on a second cryp-
tographic key to generate a token; and storing, by the
computing device, the token in an output file.

Example 16 includes the subject matter of Example 15,
and further including extracting, by the computing device,
the token from the output file to be detokenized; performing,
by the computing device, data domain-specific format-pre-
serving decryption on the extracted token based on the
second cryptographic key to generate decrypted data; replac-
ing, by the computing device, one or more portions of the
decrypted data with the corresponding one or more portions
of the encrypted data based on the mapping table; perform-
ing, by the computing device, data domain-specific format-
preserving decryption on the one or more portions of
encrypted data based on the first cryptographic key to
generate plaintext data; and storing, by the computing
device, the plaintext data in the input file.

Example 17 includes the subject matter of any of
Examples 15 and 16, and wherein extracting the plaintext
data from the input file comprises extracting the plaintext
data from a location in the input file; and storing the
plaintext data in the input file comprises storing the plaintext
data at the location in the input file.

Example 18 includes the subject matter of any of
Examples 15-17, and wherein extracting the plaintext data
from the input file comprises extracting the plaintext data
from a location in the input file; and storing the token in the
output file comprises storing the token at the location in the
input file.

Example 19 includes the subject matter of any of
Examples 15-18, and wherein performing the encryption on
the extracted plaintext data comprises performing data
domain-specific format-preserving encryption on the
extracted plaintext data based on the first cryptographic key
and a first cryptographic tweak.

Example 20 includes the subject matter of any of
Examples 15-19, and wherein performing the encryption on
the alternative data comprises performing data domain-
specific format-preserving encryption on the alternative data
based on the second cryptographic key and a second cryp-
tographic tweak.

Example 21 includes the subject matter of any of
Examples 15-20, and further including identitying, by the
computing device, one or more characters of the plaintext
data to preserve from tokenization.

Example 22 includes the subject matter of any of
Examples 15-21, and wherein performing the encryption on
the extracted plaintext data comprises performing encryp-
tion on the extracted plaintext data other than the preserved
one or more characters; and performing the encryption on

US 9,436,839 B2

17

the alternative data comprises performing the encryption on
the alternative data other than the preserved one or more
characters.

Example 23 includes the subject matter of any of
Examples 15-22, and wherein performing the encryption on
the extracted plaintext data comprises performing data
domain-specific format-preserving encryption on the
extracted plaintext data based on the first cryptographic key
and a first cryptographic tweak, wherein the first crypto-
graphic tweak includes the preserved one or more charac-
ters.

Example 24 includes the subject matter of any of
Examples 15-23, and further including determining, by the
computing device, the first cryptographic key, the mapping
table, and the second cryptographic key associated with the
extracted plaintext data based on an alphabet of the extracted
plaintext data.

Example 25 includes the subject matter of any of
Examples 15-24, and further including selecting, by the
computing device, the one or more portions of the encrypted
data for replacement based on at least one data domain-
specific constraint.

Example 26 includes the subject matter of any of
Examples 15-25, and wherein replacing the one or more
portions of the encrypted data comprises replacing one or
more portions of the encrypted data having non-uniform
sizes.

Example 27 includes the subject matter of any of
Examples 15-26, and wherein the alternative data is modi-
fied based on a data domain-specific constraint.

Example 28 includes the subject matter of any of
Examples 15-27, and wherein extracting the plaintext data
from the input file comprises extracting the plaintext data
from a text file.

Example 29 includes a computing device comprising a
processor; and a memory having stored therein a plurality of
instructions that when executed by the processor cause the
computing device to perform the method of any of Examples
15-28.

Example 30 includes one or more machine-readable stor-
age media comprising a plurality of instructions stored
thereon that, in response to execution by a computing
device, cause the computing device to perform the method
of any of Examples 15-28.

Example 31 includes a computing device for tokenizing
data, the computing device comprising means for extracting
plaintext data from an input file to be tokenized; means for
performing data domain-specific format-preserving encryp-
tion on the extracted plaintext data based on a first crypto-
graphic key to generate encrypted data; means for replacing
one or more portions of the encrypted data with correspond-
ing portions of alternative data based on a mapping table that
maps encrypted data to alternative data; means for perform-
ing data domain-specific format-preserving encryption on
the alternative data based on a second cryptographic key to
generate a token; and means for storing the token in an
output file.

Example 32 includes the subject matter of Example 31,
and further including means for extracting the token from
the output file to be detokenized; means for performing data
domain-specific format-preserving decryption on the
extracted token based on the second cryptographic key to
generate decrypted data; means for replacing one or more
portions of the decrypted data with the corresponding one or
more portions of the encrypted data based on the mapping
table; means for performing data domain-specific format-
preserving decryption on the one or more portions of

25

30

40

45

18

encrypted data based on the first cryptographic key to
generate plaintext data; and means for storing the plaintext
data in the input file.

Example 33 includes the subject matter of any of
Examples 31 and 32, and wherein the means for extracting
the plaintext data from the input file comprises means for
extracting the plaintext data from a location in the input file;
and the means for storing the plaintext data in the input file
comprises means for storing the plaintext data at the location
in the input file.

Example 34 includes the subject matter of any of
Examples 31-33, and wherein the means for extracting the
plaintext data from the input file comprises means for
extracting the plaintext data from a location in the input file;
and the means for storing the token in the output file
comprises means for storing the token at the location in the
input file.

Example 35 includes the subject matter of any of
Examples 31-34, and wherein the means for performing the
encryption on the extracted plaintext data comprises means
for performing data domain-specific format-preserving
encryption on the extracted plaintext data based on the first
cryptographic key and a first cryptographic tweak.

Example 36 includes the subject matter of any of
Examples 31-35, and wherein the means for performing the
encryption on the alternative data comprises means for
performing data domain-specific format-preserving encryp-
tion on the alternative data based on the second crypto-
graphic key and a second cryptographic tweak.

Example 37 includes the subject matter of any of
Examples 31-36, and further including means for identifying
one or more characters of the plaintext data to preserve from
tokenization.

Example 38 includes the subject matter of any of
Examples 31-37, and wherein the means for performing the
encryption on the extracted plaintext data comprises means
for performing encryption on the extracted plaintext data
other than the preserved one or more characters; and the
means for performing the encryption on the alternative data
comprises means for performing the encryption on the
alternative data other than the preserved one or more char-
acters.

Example 39 includes the subject matter of any of
Examples 31-38, and wherein the means for performing the
encryption on the extracted plaintext data comprises means
for performing data domain-specific format-preserving
encryption on the extracted plaintext data based on the first
cryptographic key and a first cryptographic tweak, wherein
the first cryptographic tweak includes the preserved one or
more characters.

Example 40 includes the subject matter of any of
Examples 31-39, and further including means for determin-
ing the first cryptographic key, the mapping table, and the
second cryptographic key associated with the extracted
plaintext data based on an alphabet of the extracted plaintext
data.

Example 41 includes the subject matter of any of
Examples 31-40, and further including means for selecting
the one or more portions of the encrypted data for replace-
ment based on at least one data domain-specific constraint.

Example 42 includes the subject matter of any of
Examples 31-41, and wherein the means for replacing the
one or more portions of the encrypted data comprises means
for replacing one or more portions of the encrypted data
having non-uniform sizes.

US 9,436,839 B2

19

Example 43 includes the subject matter of any of
Examples 31-42, and wherein the alternative data is modi-
fied based on a data domain-specific constraint.

Example 44 includes the subject matter of any of
Examples 31-43, and wherein the means for extracting the
plaintext data from the input file comprises means for
extracting the plaintext data from a text file.

Example 45 includes a computing device for detokenizing
data, the computing device comprising a data extraction
module to extract a token from an input file to be detoken-
ized; a cryptography module to perform data domain-spe-
cific format-preserving decryption on the extracted token
based on a first cryptographic key to generate decrypted
data; a data mapping module to replace one or more portions
of the decrypted data with corresponding portions of alter-
native data based on a mapping table that maps decrypted
data to alternative data; wherein the cryptography module is
further to perform data domain-specific format-preserving
decryption on the alternative data based on a second cryp-
tographic key to generate plaintext data; and a data repack-
aging module to store the plaintext data in an output file.

Example 46 includes the subject matter of Example 45,
and wherein to extract the token from the input file com-
prises to extract the token from a location in the input file;
and wherein to store the plaintext data in the output file
comprises to store the plaintext data at the location in the
input file.

Example 47 includes the subject matter of any of
Examples 45 and 46, and wherein the extracted token
comprises a token generated as a function of (i) the second
cryptographic key applied to the plaintext data to generate
encrypted data, (ii) a reverse mapping of the mapping table
applied to the encrypted data to generate a second alternative
data, and (iii) the first cryptographic key applied to the
second alternative data.

Example 48 includes the subject matter of any of
Examples 45-47, and wherein to perform the decryption on
the extracted token comprises to perform data domain-
specific format-preserving decryption on the extracted token
based on the first cryptographic key and a first cryptographic
tweak.

Example 49 includes the subject matter of any of
Examples 45-48, and wherein to perform the decryption on
the alternative data comprises to perform data domain-
specific format-preserving decryption on the alternative data
based on the second cryptographic key and a second cryp-
tographic tweak.

Example 50 includes the subject matter of any of
Examples 45-49, and wherein the data extraction module is
further to identify one or more characters of the token to
preserve from detokenization.

Example 51 includes the subject matter of any of
Examples 45-50, and wherein to perform the decryption on
the extracted token comprises to perform decryption on the
extracted token other than the preserved one or more char-
acters; and wherein to perform the decryption on the alter-
native data comprises to perform the decryption on the
alternative data other than the preserved one or more char-
acters.

Example 52 includes the subject matter of any of
Examples 45-51, and wherein the data extraction module is
further to determine the first cryptographic key, the mapping
table, and the second cryptographic key associated with the
extracted token based on an alphabet of the extracted token.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

Example 53 includes the subject matter of any of
Examples 45-52, and wherein the one or more portions are
selected based on at least one data domain-specific con-
straint.

Example 54 includes the subject matter of any of
Examples 45-53, and wherein the one or more portions have
non-uniform sizes.

Example 55 includes the subject matter of any of
Examples 45-54, and wherein the input file comprises a text
file.

Example 56 includes a method for detokenizing data by a
computing device, the method comprising extracting, by the
computing device, a token from an input file to be detoken-
ized; performing, by the computing device, data domain-
specific format-preserving decryption on the extracted token
based on a first cryptographic key to generate decrypted
data; replacing, by the computing device, one or more
portions of the decrypted data with corresponding portions
of alternative data based on a mapping table that maps
decrypted data to alternative data; performing, by the com-
puting device, data domain-specific format-preserving
decryption on the alternative data based on a second cryp-
tographic key to generate plaintext data; and storing, by the
computing device, the plaintext data in an output file.

Example 57 includes the subject matter of Example 56,
and wherein extracting the token from the input file com-
prises extracting the token from a location in the input file;
and storing the plaintext data in the output file comprises
storing the plaintext data at the location in the input file.

Example 58 includes the subject matter of any of
Examples 56 and 57, and wherein performing the decryption
on the extracted token comprises performing data domain-
specific format-preserving decryption on the extracted token
based on the first cryptographic key and a first cryptographic
tweak.

Example 59 includes the subject matter of any of
Examples 56-58, and wherein performing the decryption on
the alternative data comprises performing data domain-
specific format-preserving decryption on the alternative data
based on the second cryptographic key and a second cryp-
tographic tweak.

Example 60 includes the subject matter of any of
Examples 56-59, and further including identitying, by the
computing device, one or more characters of the token to
preserve from detokenization.

Example 61 includes the subject matter of any of
Examples 56-60, and wherein performing the decryption on
the extracted token comprises performing decryption on the
extracted token other than the preserved one or more char-
acters; and wherein performing the decryption on the alter-
native data comprises performing the decryption on the
alternative data other than the preserved one or more char-
acters.

Example 62 includes the subject matter of any of
Examples 56-61, and further including determining, by the
computing device, the first cryptographic key, the mapping
table, and the second cryptographic key associated with the
extracted token based on an alphabet of the extracted token.

Example 63 includes the subject matter of any of
Examples 56-62, and further including selecting, by the
computing device, the one or more portions of the decrypted
data for replacement based on at least one data domain-
specific constraint.

Example 64 includes the subject matter of any of
Examples 56-63, and wherein replacing the one or more

US 9,436,839 B2

21

portions of the decrypted data comprises replacing one or
more portions of the decrypted data having non-uniform
sizes.

Example 65 includes the subject matter of any of
Examples 56-64, and wherein extracting the token from the
input file comprises extracting the token from a text file.

Example 66 includes a computing device comprising a
processor; and a memory having stored therein a plurality of
instructions that when executed by the processor cause the
computing device to perform the method of any of Examples
56-65.

Example 67 includes one or more machine-readable stor-
age media comprising a plurality of instructions stored
thereon that, in response to execution by a computing
device, cause the computing device to perform the method
of any of Examples 56-65.

Example 68 includes a computing device for detokenizing
data, the computing device comprising means for extracting
a token from an input file to be detokenized; means for
performing data domain-specific format-preserving decryp-
tion on the extracted token based on a first cryptographic key
to generate decrypted data; means for replacing one or more
portions of the decrypted data with corresponding portions
of alternative data based on a mapping table that maps
decrypted data to alternative data; means for performing
data domain-specific format-preserving decryption on the
alternative data based on a second cryptographic key to
generate plaintext data; and storing the plaintext data in an
output file.

Example 69 includes the subject matter of Example 68,
and wherein the means for extracting the token from the
input file comprises means for extracting the token from a
location in the input file; and means for storing the plaintext
data in the output file comprises storing the plaintext data at
the location in the input file.

Example 70 includes the subject matter of any of
Examples 68 and 69, and wherein the means for performing
the decryption on the extracted token comprises means for
performing data domain-specific format-preserving decryp-
tion on the extracted token based on the first cryptographic
key and a first cryptographic tweak.

Example 71 includes the subject matter of any of
Examples 68-70, and wherein the means for performing the
decryption on the alternative data comprises means for
performing data domain-specific format-preserving decryp-
tion on the alternative data based on the second crypto-
graphic key and a second cryptographic tweak.

Example 72 includes the subject matter of any of
Examples 68-71, and further comprising means for identi-
fying one or more characters of the token to preserve from
detokenization.

Example 73 includes the subject matter of any of
Examples 68-72, and wherein the means for performing the
decryption on the extracted token comprises means for
performing decryption on the extracted token other than the
preserved one or more characters; and wherein the means for
performing the decryption on the alternative data comprises
means for performing the decryption on the alternative data
other than the preserved one or more characters.

Example 74 includes the subject matter of any of
Examples 68-73, and further including means for determin-
ing the first cryptographic key, the mapping table, and the
second cryptographic key associated with the extracted
token based on an alphabet of the extracted token.

Example 75 includes the subject matter of any of
Examples 68-74, and further including means for selecting

20

30

40

45

55

60

65

22

the one or more portions of the decrypted data for replace-
ment based on at least one data domain-specific constraint.

Example 76 includes the subject matter of any of
Examples 68-75, and wherein the means for replacing the
one or more portions of the decrypted data comprises means
for replacing one or more portions of the decrypted data
having non-uniform sizes.

Example 77 includes the subject matter of any of
Examples 68-76, and wherein the means for extracting the
token from the input file comprises means for extracting the
token from a text file.

The invention claimed is:

1. A computing device for tokenizing data, the computing
device comprising:

a data extraction module to extract plaintext data from an

input file to be tokenized;

a cryptography module to perform data domain-specific
format-preserving encryption on the extracted plaintext
data based on a first cryptographic key to generate
encrypted data;

a data mapping module to replace one or more portions of
the encrypted data with corresponding portions of
alternative data based on a mapping table that maps
encrypted data to alternative data;

wherein the cryptography module is further to perform
data domain-specific format-preserving encryption on
the alternative data based on a second cryptographic
key to generate a token; and

a data repackaging module to store the token in an output
file.

2. The computing device of claim 1, wherein to extract the
plaintext data from the input file comprises to extract the
plaintext data from a location in the input file; and

wherein to store the token in the output file comprises to
store the token at the location in the input file.

3. The computing device of claim 1, wherein the data
extraction module is further to determine the first crypto-
graphic key, the mapping table, and the second crypto-
graphic key associated with the extracted plaintext data
based on an alphabet associated with the extracted plaintext
data.

4. The computing device of claim 1, wherein the one or
more portions are selected based on at least one data
domain-specific constraint.

5. The computing device of claim 1, wherein the one or
more portions have non-uniform sizes.

6. The computing device of claim 1, wherein the alterna-
tive data is modified based on a data domain-specific con-
straint.

7. The computing device of claim 1, wherein the input file
comprises a text file.

8. The computing device of claim 1, wherein:

the data extraction module is further to extract the token
from the output file to be detokenized;

the cryptography module is further to perform data
domain-specific format-preserving decryption on the
extracted token based on the second cryptographic key
to generate decrypted data;

the data mapping module is further to replace one or more
portions of the decrypted data with the corresponding
one or more portions of the encrypted data based on the
mapping table;

the cryptography module is further to perform data
domain-specific format-preserving decryption on the
one or more portions of encrypted data based on the
first cryptographic key to generate plaintext data; and

US 9,436,839 B2

23

the data repackaging module is further to store the plain-

text data in the input file.

9. The computing device of claim 8, wherein to extract the
plaintext data from the input file comprises to extract the
plaintext data from a location in the input file; and

wherein to store the plaintext data in the input file

comprises to store the plaintext data at the location in
the input file.

10. The computing device of claim 1, wherein to perform
the encryption on the extracted plaintext data comprises to
perform data domain-specific format-preserving encryption
on the extracted plaintext data based on the first crypto-
graphic key and a first cryptographic tweak.

11. The computing device of claim 10, wherein to perform
the encryption on the alternative data comprises to perform
data domain-specific format-preserving encryption on the
alternative data based on the second cryptographic key and
a second cryptographic tweak.

12. The computing device of claim 1, wherein the data
extraction module is further to identify one or more char-
acters of the plaintext data to preserve from tokenization.

13. The computing device of claim 12, wherein to perform
the encryption on the extracted plaintext data comprises to
perform encryption on the extracted plaintext data other than
the preserved one or more characters; and

wherein to perform the encryption on the alternative data

comprises to perform the encryption on the alternative
data other than the preserved one or more characters.

14. The computing device of claim 12, wherein to perform
the encryption on the extracted plaintext data comprises to
perform data domain-specific format-preserving encryption
on the extracted plaintext data based on the first crypto-
graphic key and a first cryptographic tweak, wherein the first
cryptographic tweak includes the preserved one or more
characters.

15. One or more machine-readable storage media com-
prising a plurality of instructions stored thereon that, in
response to execution by a computing device, cause the
computing device to:

extract plaintext data from an input file to be tokenized;

perform data domain-specific format-preserving encryp-

tion on the extracted plaintext data based on a first
cryptographic key to generate encrypted data;

replace one or more portions of the encrypted data with

corresponding portions of alternative data based on a
mapping table that maps encrypted data to alternative
data;

perform data domain-specific format-preserving encryp-

tion on the alternative data based on a second crypto-
graphic key to generate a token; and

store the token in an output file.

16. The one or more machine-readable storage media of
claim 15, further comprising:

extracting, by the computing device, the token from the

output file to be detokenized;

performing, by the computing device, data domain-spe-

cific format-preserving decryption on the extracted
token based on the second cryptographic key to gen-
erate decrypted data;

replacing, by the computing device, one or more portions

of the decrypted data with the corresponding one or
more portions of the encrypted data based on the
mapping table;

performing, by the computing device, data domain-spe-

cific format-preserving decryption on the one or more
portions of encrypted data based on the first crypto-
graphic key to generate plaintext data; and

20

25

35

40

45

50

55

60

65

24

storing, by the computing device, the plaintext data in the
input file.

17. The one or more machine-readable storage media of
claim 15, wherein the plurality of instructions further cause
the computing device to determine the first cryptographic
key, the mapping table, and the second cryptographic key
associated with the extracted plaintext data based on an
alphabet associated with the extracted plaintext data.

18. The one or more machine-readable storage media of
claim 15, wherein to perform the encryption on the extracted
plaintext data comprises to perform data domain-specific
format-preserving encryption on the extracted plaintext data
based on the first cryptographic key and a first cryptographic
tweak.

19. The one or more machine-readable storage media of
claim 18, wherein to perform the encryption on the alterna-
tive data comprises to perform data domain-specific format-
preserving encryption on the alternative data based on the
second cryptographic key and a second cryptographic
tweak.

20. The one or more machine-readable storage media of
claim 15, wherein the plurality of instructions further cause
the computing device to identify one or more characters of
the plaintext data to preserve from tokenization.

21. The one or more machine-readable storage media of
claim 20, wherein to:

perform the encryption on the extracted plaintext data
comprises to perform encryption on the extracted plain-
text data other than the preserved one or more charac-
ters; and

perform the encryption on the alternative data comprises
to perform the encryption on the alternative data other
than the preserved one or more characters.

22. The one or more machine-readable storage media of
claim 20, wherein to perform the encryption on the extracted
plaintext data comprises to perform data domain-specific
format-preserving encryption on the extracted plaintext data
based on the first cryptographic key and a first cryptographic
tweak, wherein the first cryptographic tweak includes the
preserved one or more characters.

23. A computing device for detokenizing data, the com-
puting device comprising:

a data extraction module to extract a token from an input

file to be detokenized;

a cryptography module to perform data domain-specific
format-preserving decryption on the extracted token
based on a first cryptographic key to generate decrypted
data;

a data mapping module to replace one or more portions of
the decrypted data with corresponding portions of
alternative data based on a mapping table that maps
decrypted data to alternative data;

wherein the cryptography module is further to perform
data domain-specific format-preserving decryption on
the alternative data based on a second cryptographic
key to generate plaintext data; and

a data repackaging module to store the plaintext data in an
output file.

24. The computing device of claim 23, wherein to extract
the token from the input file comprises to extract the token
from a location in the input file; and

wherein to store the plaintext data in the output file
comprises to store the plaintext data at the location in
the input file.

25. The computing device of claim 23, wherein the

extracted token comprises a token generated as a function of
(1) the second cryptographic key applied to the plaintext data

US 9,436,839 B2
25 26

to generate encrypted data, (ii) a reverse mapping of the
mapping table applied to the encrypted data to generate a
second alternative data, and (iii) the first cryptographic key
applied to the second alternative data.

#* #* #* #* #*

